Regulation of neuronal voltage-gated sodium channels by the ubiquitin-protein ligases Nedd4 and Nedd4-2.

نویسندگان

  • Andrew B Fotia
  • Jenny Ekberg
  • David J Adams
  • David I Cook
  • Philip Poronnik
  • Sharad Kumar
چکیده

Nedd4 and Nedd4-2 are ubiquitin-protein ligases known to regulate a number of membrane proteins including receptors and ion transporters. Regulation of the epithelial Na(+) channel by Nedd4 and Nedd4-2 is mediated via interactions between the PY motifs of the epithelial sodium channel subunits and the Nedd4/Nedd4-2 WW domains. This example serves as a model for the regulation of other PY motif-containing ion channels by Nedd4 and Nedd4-2. We found that the carboxyl termini of the six voltage-gated Na(+) (Na(v)) channels contain typical PY motifs (PPXY), and a further Na(v) contains a PY motif variant (LPXY). Not only did we demonstrate by Far-Western analysis that Nedd4 and Nedd4-2 interact with the PY motif-containing Na(v) channels, but we also showed that these channels have conserved WW domain binding specificity. We further showed that the carboxyl termini fusion proteins of one central nervous system and one peripheral nervous system-derived Na(+) channel (Na(v)1.2 and Na(v)1.7, respectively) are readily ubiquitinated by Nedd4-2. In Xenopus oocytes, Nedd4-2 strongly inhibited the activities of all three Na(v)s (Na(v)1.2, Na(v)1.7, and Na(v)1.8) tested. Interestingly, Nedd4 suppressed the activity of Na(v)1.2 and Na(v)1.7 but was a poor inhibitor of Na(v)1.8. Our results provide evidence that Nedd4 and Nedd4-2 are likely to be key regulators of specific neuronal Na(v) channels in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular determinants of voltage-gated sodium channel regulation by the Nedd4/Nedd4-like proteins.

The voltage-gated Na(+) channels (Na(v)) form a family composed of 10 genes. The COOH termini of Na(v) contain a cluster of amino acids that are nearly identical among 7 of the 10 members. This COOH-terminal sequence, PPSYDSV, is a PY motif known to bind to WW domains of E3 protein-ubiquitin ligases of the Nedd4 family. We recently reported that cardiac Na(v)1.5 is regulated by Nedd4-2. In this...

متن کامل

Neuronal Precursor Cell-expressed Developmentally Down-regulated 4-1 (NEDD4-1) Controls the Sorting of Newly Synthesized CaV1.2 Calcium Channels*

Neuronal precursor cell-expressed developmentally down-regulated 4 (Nedd4) proteins are ubiquitin ligases, which attach ubiquitin moieties to their target proteins, a post-translational modification that is most commonly associated with protein degradation. Nedd4 ubiquitin ligases have been shown to down-regulate both potassium and sodium channels. In this study, we investigated whether Nedd4 u...

متن کامل

Cardiac voltage-gated sodium channel Nav1.5 is regulated by Nedd4-2 mediated ubiquitination.

Na(v)1.5, the cardiac isoform of the voltage-gated Na+ channel, is critical to heart excitability and conduction. However, the mechanisms regulating its expression at the cell membrane are poorly understood. The Na(v)1.5 C-terminus contains a PY-motif (xPPxY) that is known to act as binding site for Nedd4/Nedd4-like ubiquitin-protein ligases. Because Nedd4-2 is well expressed in the heart, we i...

متن کامل

Regulation of the voltage-gated K(+) channels KCNQ2/3 and KCNQ3/5 by serum- and glucocorticoid-regulated kinase-1.

The voltage-gated KCNQ2/3 and KCNQ3/5 K(+) channels regulate neuronal excitability. We recently showed that KCNQ2/3 and KCNQ3/5 channels are regulated by the ubiquitin ligase Nedd4-2. Serum- and glucocorticoid-regulated kinase-1 (SGK-1) plays an important role in regulation of epithelial ion transport. SGK-1 phosphorylation of Nedd4-2 decreases the ability of Nedd4-2 to ubiquitinate the epithel...

متن کامل

Dysregulation of voltage-gated sodium channels by ubiquitin ligase NEDD4-2 in neuropathic pain.

Peripheral neuropathic pain is a disabling condition resulting from nerve injury. It is characterized by the dysregulation of voltage-gated sodium channels (Navs) expressed in dorsal root ganglion (DRG) sensory neurons. The mechanisms underlying the altered expression of Na(v)s remain unknown. This study investigated the role of the E3 ubiquitin ligase NEDD4-2, which is known to ubiquitylate Na...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 279 28  شماره 

صفحات  -

تاریخ انتشار 2004